

R&D In Navy Phased Array Radar Research and Development Rob Sexton, Naval Surface Warfare Center, Dahlgren Division for Dr. Michael A. Pollock Office of Naval Research, ONR 312 Surface and Aerospace Surveillance

Second National Symposium on Multi-function Phased Array Technology Innovation and Development November 18, 2009 Approved for Public Release

Outline

- Surface Navy Phased Array Evolution
- Digital Array Radar (DAR) Program
- Affordable Common Radar Architecture (ACRA) Program
- Navy Phased Array Radar / Multifunction Phased Array Radar Synergies / Differences

Navy Phased Array Radar Highlights

- Primary Navy research and development activities centered on S-band phased arrays for volume surveillance applications from surface combatants.
- Near term S&T need driven by risk reduction for Air and Missile Defense Radar (AMDR) area and ballistic missile defense multi-mission requirements
 - High sensitivity, wide dynamic range and flexible time energy management
- Longer term S&T need driven by risk reduction for affordable volume surveillance radar concepts to replace aging fleet of legacy long range surveillance systems
- The S&T strategy includes pushing hardware and software Open Architecture into the radar, not just at the radar / combat system interface

Surface Combatant Missions

Ship Self-defense

Volume Surveillance

High power, multi-function radar (X-band)

High power, S-Band Advanced Radar (SBAR)

Navy Phased Array Evolution

ONR Digital Array Radar (DAR) Program

Digital Radar Enables Multiple Simultaneous Beams

Warfighting Improvements

- Enabling technology for large S-band power aperture radars
- Improved time / energy management with multi-beam search
- Effective operations in the littoral
- Enables software upgrades as new effective techniques are discovered
- Increased dynamic range & stability

Products

- Subsystems Developed & Tested in Lab Environment
 - Digital Receiver / Exciter
 - Digital Beamform Processor
 - Digital Signal Processor

Products

- DAR Test Bed
- Test/Demo

Open Architecture Radar Specification

Combat

Digital Array Radar Architecture Highlights

- Decomposition of radar into loosely coupled subsystems with well documented interfaces allows
 - Potential for acquisition of radar subsystems in a more competitive environment
 - "Best of Breed" subsystems
 - Radar primes + smaller companies having niche technical capabilities compete for subsystem designs
 - Upgrade capability over time
 - Reuse of subsystems in other radar systems
- Time of Day control of subsystems facilitates coordination across a ship & in the future across a battle group
 - Sensor systems can understand what other sensors are doing in real time and adapt accordingly
 - Example: Electronic Support Measures (ESM) sensor can receive time of day based control messages for radar and determine what frequencies to avoid and when
- No contractor owned Intellectual Property in basic architecture and interfaces

DAR Digital Receiver Exciter

OA Digital Beam Forming

Ongoing Improvements to Size, Cost, and Capability

Digital Processing Equipment

Commercial Network Switch Used for Data Distribution and Control

Commercial Blade Processor Example

for

Pulse compression, Doppler filtering, CFAR detection, tracking, control, etc

Digital Array Radar Test Bed

 Test Bed construction progressing from 4 - 32 - 64 channels

ONR Affordable Common Radar Architecture (ACRA) Program

Shipboard Fixed Phased Array

ACRA Common Components

Scalable Arrays Receiver/Exciter Signal / Data Processor

5 year (FY-09 - FY-13) Program to Build Risk Reduction Prototype Rotating Phased Array

Using a Common Set of Subsystems, Build Designs That Can Meet Needs of Both Rotating Phased Array & Fixed Face Array Installations

ACRA Architecture

Federated Tx & Rx Apertures

- Transmit-elevation fan beam flooded with many high gain receive beams
- Large Rx array
 - Low cost printed circuit board design
 - Scalable 48x48 to 96x96 elements
- Smaller Tx array
 - Active array design for prototype
 - Upgrade Tx independent of Rx over time & as new technology emerges
- Reuse of several critical technologies developed by Digital Array Radar program
 - Digital exciter
 - Digital beamformer
 - New technology developments
 - Rx array
 - Tx array
 - High density, low cost downconverters

Navy PAR and MPAR Synergy/Differences

Parameter	Navy High Performance	Navy Legacy Replacement	MPAR ¹
Sensitivity	highest	high	high
Pulse width / duty cycle	highest / highest	higher / higher	lowest / lowest
Tunable Bandwidth	widest	wider	narrowest
Instantaneous Bandwidth	widest	wider	narrowest
# Simultaneous Beams	larger	lowest - largest (design dependent)	lowest - largest (design dependent)
Stability	highest	high	high
Dynamic Range	highest	high	moderate
Electromagnetic Compatibility	highest	highest	lowest
Polarization	linear	linear	linear (switchable) / circular

¹From "MPAR Trade Studies" presentation by Mark Weber, National Symposium on Multifunction Phased Array Radar, 12 October 2007

Comments on Navy PAR / MPAR Synergy/Differences

- MPAR past notional designs appear to be focused on large arrays of low power elements with volume production and design for manufacturability applied to control costs
 - T/R module / array technologies synergy with Navy applications unclear
- Possible potential for common elements of:
 - Digital Receiver Exciter
 - Digital Beam Forming
 - Signal Processing and Controls
- A well defined Open Architecture would allow greater opportunity for re-use across programs
 - Would require design to superset of requirements
 - Cost savings potential depends on requirement specifics and volume of purchase
 - Possible to realize cost savings for all participating parties OR only for one party (low volume DoD application with more demanding requirement could benefit, while high volume application with less demanding requirement might suffer)

Summary

- Primary Navy research and development activities centered on S-band phased arrays for volume surveillance applications from surface combatants.
- Near term S&T need driven by risk reduction for Air and Missile Defense Radar (AMDR) area and ballistic missile defense multi-mission requirements
 - High sensitivity, wide dynamic range and flexible time energy management
- Longer term S&T need driven by risk reduction for affordable volume surveillance radar concepts to replace aging fleet of legacy long range surveillance systems
- The S&T strategy includes pushing hardware and software Open Architecture into the radar, not just at the radar / combat system interface

Contact Information

- Rob Sexton,
 - Naval Surface Warfare Center Dahlgren
 Division
 - Email: robert.d.sexton@navy.mil
- Dr. Mike Pollock,
 - Office of Naval Research
 - Email: michael.a.pollock@navy.mil